Эластичность
Из описанного выше мы узнали как изменяется спрос под воздействием различных факторов и для различных товаров. Зачастую возникает потребность в том, чтобы измерить меру "чувствительности" спроса к тому или иному изменению цены или дохода. Первая мысль, обычно возникающая в этой связи, заключается в том, чтобы использовать в качестве такой меры чувствительности наклон функции спроса. В конце концов, наклон функции спроса, по определению, есть изменение количества спроса, деленное на изменение цены:
наклон функции спроса =
а это, безусловно, похоже на искомую меру чувствительности.
Эластичность – мера реагирования одной переменной величины на изменение другой; точнее это число, которое показывает процентное изменение одной переменной в результате однопроцентного изменения другой переменной.(7. стр.38)
Что ж, это и есть мера чувствительности, но с ней возникают некоторые проблемы. Самая главная из них состоит в том, что наклон функции спроса зависит от единиц измерения цены и количества спроса. Если вы измеряете спрос не в квартах, а в галлонах, то наклон становится в четыре раза меньше. Вместо того чтобы всякий раз уточнять, о каких единицах измерения идет речь, удобнее рассмотреть меру чувствительности, не зависящую от единиц измерения. Экономисты выбрали в качестве такой меры чувствительности спроса к изменению цены эластичность.
Ценовая эластичность спроса ε определяется как процентное изменение количества спроса, деленное на процентное изменение цены. 10%-ное увеличение цены остается тем же самым процентным увеличением цены, измеряем ли мы цену в американских долларах или в английских фунтах; таким образом, измерение приростов в процентах делает определение эластичности не зависимым от единиц измерения.
В условных обозначениях определение эластичности имеет вид
Преобразовав это выражение, получим выражение более распространенного вида:
Следовательно, эластичность может быть выражена как произведение отношения цены к количеству спроса на величину, обратную наклону функции спроса. В приложении к настоящей главе мы описываем эластичность через производную функции спроса. Если вы знакомы с дифференциальным исчислением, то формулировка через производную — наиболее удобный способ представления эластичности.
Коэффициенты эластичности спроса обычно имеют отрицательный знак, поскольку кривые спроса неизменно имеют отрицательный наклон. Однако все время говорить о коэффициенте эластичности, составляющем минус то-то или то-то утомительно, поэтому в устных рассуждениях принято говорить о коэффициентах эластичности, равных 2 или 3, а не —2 или —3. В тексте мы постараемся сохранить необходимые знаки, говоря об абсолютной величине коэффициентов эластичности, но вы должны знать о том, что в устных трактовках эластичности имеется тенденция опускать знак "минус".
Другая проблема с отрицательными числами возникает при сравнении величин. Что больше: эластичность, равная —3, или эластичность, равная —2? С точки зрения алгебры, —3 меньше чем —2, но экономисты обычно говорят, что спрос с эластичностью —3 более эластичен, чем спрос с эластичностью — 2. В этой книге мы будем производить сравнения коэффициентов эластичности спроса по абсолютной величине, чтобы избежать данного рода двусмысленности.(4. стр.297-299)