Сущность и причины гетероскедастичности
Второе условие Гаусса–Маркова о гомоскедастичности, то есть равноизменчивости остатков – это одно из важнейших предпосылок МНК.
Так как математическое ожидание остатков в каждом наблюдении равно нулю, то квадраты остатков могут служить оценками их дисперсий.
Эти квадраты остатков входят в ESS (которая минимизируется в МНК) с одинаковыми единичными весами, а это не всегда правомерно, так как на практике гетероскедастичность не так уж редко встречается.
Например, с ростом дохода растёт не только средний уровень потребления, но и разброс в потреблении. Он более присущ субъектам с высоким доходом, так как они имеют больший простор для распределения доходов. Проблема гетероскедастичности более характерна для пространственных выборок. Очевидно, что при наличии гетероскедастичности наблюдениям с большей дисперсией следует в ESS придавать меньший вес и наоборот, а не учитывать их равновзвешенными, как это делается в классическом МНК.
Точка на диаграмме рассеяния, полученная из наблюдения с меньшей дисперсией, более точно определяет направление линии регрессии, чем точка из наблюдения с большей дисперсией.
Последствия гетероскедастичности таковы:
1. Оценки параметров не будут эффективными, то есть не будут иметь наименьшую дисперсию по сравнению с другими оценками; при этом они будут оставаться несмещенными.
2. Дисперсии оценок будут смещены, так как будет смещена дисперсия на одну степень свободы которая используется при вычислении оценок дисперсий всех коэффициентов.
3. Выводы, получаемые на основе завышенных F- и t-статистик, и интервальные оценки будут ненадёжны.